Ir al contenido principal

Octavo grado- Los números racionales

En sentido amplio, se llama número racional a todo número que puede representarse como el cociente de dos enteros con denominador distinto de cero. El término racional alude a ración o parte de un todo, y no al pensamiento o actitud racional.

Representación gráfica de las fracciones cuyo divisor es 4.
En sentido estricto, número racional es el conjunto de todas las fracciones equivalentes a una dada; de todas ellas, se toma como representante canónico de dicho número racional a la fracción irreducible, la de términos más sencillos.
Definimos un número racional como un decimal finito o infinito periódico (por ejemplo, el número decimal finito 0,75 es la representación decimal del número racional 3/4. El número decimal infinito periódico 0,333... es la representación decimal del número racional 1/3).

El conjunto de los números racionales se denota por \mathbb{Q}, que significa "cociente" (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros y es un subconjunto de los números reales. 
La definición de los números Raciones dada en clase, además de las dadas aquí, establece que un número Racional (Q) se obtiene de dividir dos números enteros p/q, donde q es diferente de cero. Quedando el conjunto:


Los números racionales cumplen la propiedad arquimediana o de densidad, esto es, para cualquier pareja de números racionales existe otro número racional situado entre ellos, propiedad que no estaba presente en los números enteros, por lo que los números racionales son densos en la recta de los números reales.
Si colocamos a los racionales en una recta real, podemos encontrar el siguiente caso ejemplo:
Observe que en los puntos en verde se han ubicado algunas fracciones, que corresponden al denominador 2.
Observe detenidamente el siguiente video donde se anima el concepto de los números fraccionarios, recordemos que los números fraccionarios son un subconjunto de los números Racionales.

Comentarios

Entradas populares de este blog

Ejercicios sobre clasificación de ángulos primaria y secundaria

En esta entrada les comparto un taller sobre la clasificación de ángulos según su amplitud y también incluye un segundo ejercicio para ángulos suplementarios y complementarios.
Clasificación de ángulos según su amplitud:




Descarga el taller de clasificación de ángulos



Como siempre si les ha servido dejen comentarios y compartan.

Resolución de triángulos rectángulos, ejercicios resueltos

Este es una lista de ejercicios de ejemplos donde se aplican las razones trigonométricas conocidas en clases para resolver los lados y ángulos de un triángulo rectángulo:

Ejemplo 1

De un triángulo rectángulo ABC, se conocen los lados a = 5 m y el ángulo B = 41.7°. Resolver el triángulo.

Primero sabiendo que la suma de los ángulos internos de un triángulo suman 180 grados, sustituimos los ángulos conocidos y despejamos el ángulo C, quedando así:
Conocemos al lado a, planteamos el seno de B como lado b (cateto opuesto) sobre lado a (hipotenusa), sustituimos el valor de a y despejamos el lado b, así:

Conocemos al lado a, planteamos el Coseno de B como lado c (cateto adyacente) sobre lado a (hipotenusa), sustituimos el valor de a y despejamos el lado c, así:


Ejemplo 2

De un triángulo rectángulo ABC, se conocen a = 6 m y b = 4 m. Resolver el triángulo.




Sabemos que seno de C es cateto opuesto (lado c) entre la hipotenusa (lado a), planteamos la fórmula, despejamos a c y sustituimos los val…